CONVEX POLYTOPES WITHOUT TRIANGULAR FACES

BY

G. BLIND^a AND R. BLIND^b

*Math. Institut B, Universität Stuttgart, Pfaffenwaldring 57, D7000 Stuttgart 80, FRG; and bWaldburgstr. 88, D7000 Stuttgart 80, FRG

ABSTRACT

Let P be a convex d-polytope without triangular 2-faces. For $j = 0, \ldots, d-1$ denote by $f_j(P)$ the number of j-dimensional faces of P. We prove the lower bound $f_j(P) \ge f_j(C_d)$ where C_d is the d-cube, which has been conjectured by Y. Kupitz in 1980. We also show that for any j equality is only attained for cubes. This result is a consequence of the far-reaching observation that such polytopes have pairs of disjoint facets. As a further application we show that there exists only one combinatorial type of such polytopes with exactly 2d + 1 facets.

1. Introduction

In d-dimensional Euclidean space E^d , $d \ge 3$, let \mathfrak{P}^d be a class of convex d-dimensional polytopes. For $P \in \mathfrak{P}^d$ and $j = 0, \ldots, d-1$ denote by $f_j(P)$ the number of j-dimensional faces of P. The question is to determine $\inf\{f_j(P)|P \in \mathfrak{P}^d\}$ and to characterize those $P \in \mathfrak{P}^d$ which have the smallest possible number of j-faces for given j. Within the class of all convex polytopes, e.g., exactly the simplices have minimal number of vertices or facets.

If \mathfrak{P}^d is the class of *d*-polytopes with a given number of facets, this question has been studied for about twenty years (see [9, p. 183]), but little seems to be known (see [7, p. 129]). If in addition the polytopes of \mathfrak{P}^d are simple, we have the famous *lower bound theorem* which has been proved in [1], [2] and [3].

An interesting class of polytopes is the class \mathcal{O}_{\square}^d of d-polytopes without triangular 2-faces or, equivalently, without a face which is a pyramid. In 1980 Y. Kupitz conjectured that $\inf\{f_i(P)|P\in\mathcal{O}_{\square}^d\}$ equals the number of j-faces of the d-cube (see [11]). This has been proved in [4] and [5], but only for simple polytopes resp. for certain values of j such as most results in this field.

Received January 4, 1990

Here the conjecture of Y. Kupitz is proved without any additional assumption. We show

Theorem 1. Let P be a d-polytope without triangular faces and let C_d be the d-cube. Then

(*)
$$f_j(P) \ge f_j(C_d) = 2^{d-j} \binom{d}{j}, \quad 0 \le j \le d-1.$$

Furthermore, if equality is attained for some $j \in \{0, ..., d-1\}$, then P is combinatorially equivalent to C_d .

This yields a simple characterization of the *d*-cube within a general class of polytopes. Note the interesting fact that the minimal polytopes of \mathcal{O}_{\square}^d are simple.

The abundance of faces of the polytopes of \mathcal{O}_{\square}^d comes from an interesting property of them, namely, that they have a pair of disjoint facets. We even have

THEOREM 2. Let P be a d-polytope without triangular faces. Let F be any facet of P. Then there exists a facet F' disjoint from F.

By Theorem 1 a polytope of \mathcal{O}_{\square}^d has at last 2d facets. The (d-2)-fold d-prism (see [9, p. 56]) with basis a pentagon is a polytope of \mathcal{O}_{\square}^d with 2d+1 facets. These are the only such polytopes:

THEOREM 3. Let P be a d-polytope without triangular faces and with exactly 2d + 1 facets. Then P is a (d - 2)-fold d-prism with basis a pentagon.

We shall use the following terminology and notation. Let P be any convex d-polytope. We put $f_{-1}(P) := 0$ and $f_d(P) := 1$. P is said to be *cubic* if it is combinatorially equivalent to the cube. If all facets of P are cubic, P is called *cubical*. A vertex of P is called *simple* provided it is contained in exactly d facets. A *subfacet* of P is a (d-2)-face of P.

2. Proof of Theorem 2

Let P be a convex polytope and let ∂P be the boundary complex of P. A shelling of ∂P is a labelling $\{F_1, \ldots, F_m\}$ of the $m = f_{d-1}(P)$ facets of P so that for $s = 2, \ldots, m-1$ the set $F_s \cap \bigcup_{i=1}^{s-1} F_i$ is homeomorphic to a (d-2)-ball (see e.g. [13, p. 173]). It is well known that ∂P is shellable. There even exist special shellings:

LEMMA 1. Let p be a vertex of P. Then there exists a shelling $\{F_1, F_2, \ldots, F_k, \ldots, F_m\}$ of ∂P so that $p \in F_i$ if and only if $1 \le i \le k$.

This is proved, e.g., in [12]. It may also be proved by a small modification of the original proof of shellability in [8], see [6, Lemma 7].

We prove Theorem 2 by duality. Thus we show: Let P^* be a d-polytope in which each (d-3)-face is contained in at least 4 facets. Let p be any vertex of P^* . Then there exists a vertex p' of P^* such that no facet of P^* contains both p and p'.

We assume that this is not true. This means that every vertex of P^* is contained in a facet through p.

By Lemma 1 there exists a shelling $\{F_1, F_2, \ldots, F_k, \ldots, F_m\}$ of ∂P^* so that $p \in F_i$ if and only if $1 \le i \le k$. We have $k \le m-2$, since in case k=m-1 the polytope P^* were dual to a pyramid always having a triangular face, in contradiction to the required property of P^* . Hence $D := F_{k+1} \cap \bigcup_{i=1}^k F_i$ is homeomorphic to a (d-2)-ball.

Therefore D contains a (d-2)-face D_1 . This is a proper face of F_{k+1} , so F_{k+1} contains at least one vertex $q \notin D_1$. By assumption every vertex of P^* is contained in $\bigcup_{i=1}^k F_i$, thus $q \in D$. Since D is homeomorphic to a (d-2)-ball, it follows that D contains a (d-2)-face D_2 such that $D_1 \cap D_2$ is a (d-3)-face K.

We have $D_1 = F_{k+1} \cap F_m$, $D_2 = F_{k+1} \cap F_n$ for certain $m, n \le k$ and $m \ne n$. $F_m \cap F_n$ contains K and P, and using $P \notin F_{k+1}$ we have $P \notin K$, hence $P_m \cap F_n$ is (d-2)-dimensional. So K is contained in the facets P_m , P_n , P_{k+1} which pairwise intersect in a (d-2)-face containing K. Consequently the (d-3)-face K is contained in precisely these three facets in contradiction to the required property of P^* .

3. Proof of Theorem 1

We begin with two remarks on d-dimensional cubic polytopes C_d .

(i) The numbers $f_j(C_d)$ may be calculated from $f_j(C_2)$ by induction on d according to

$$f_j(C_d) = 2f_j(C_{d-1}) + f_{j-1}(C_{d-1}), \quad 0 \le j \le d-1, \quad d \ge 3.$$

(ii) Let P be a cubical d-polytope. If P has two disjoint facets containing all the vertices of P, then P is cubic.

We prove Theorem 1 by induction on the dimension d. The corresponding statement for d=2 is obviously true and we assume that Theorem 1 is true in dimension $d-1 \ge 2$.

For $d \ge 3$ let P be a d-polytope without triangular faces. Let F be a facet of P, then F also has no triangular faces. So by induction hypothesis we have

$$f_j(F) \ge f_j(C_{d-1}), \qquad 0 \le j \le d-2,$$

and if equality is attained for some $j \in \{0, ..., d-2\}$, then F is cubic.

By Theorem 2 for every facet F_1 of P there exists a disjoint facet F_2 of P. A j-face of F_1 and a j-face of F_2 are then disjoint $(0 \le j \le d - 1)$. Furthermore every (j - 1)-face of F_1 $(j \ne 0)$ is contained in a j-face of P different from a j-face of F_1 or F_2 . From all this and (i) we obtain

$$(*) f_j(P) \ge f_j(F_1) + f_j(F_2) + f_{j-1}(F_1) \ge 2f_j(C_{d-1}) + f_{j-1}(C_{d-1}) = f_j(C_d),$$

$$0 \le j \le d-1, d \ge 3,$$

which proves the inequality (*).

Now we assume that equality is attained in (*) for some given $j \in \{0, ..., d-1\}$. Then we have equality in (*) in any position. An equality sign in the second position of (*) yields $f_j(F_1) = f_j(C_{d-1})$ and $f_{j-1}(F_1) = f_{j-1}(C_{d-1})$. Because $j \in \{0, ..., d-2\}$ or $j-1 \in \{0, ..., d-2\}$ we have by induction hypothesis that F_1 is cubic. Since F_1 is any facet of P we see that P is cubical.

An equality sign in the first position of $\binom{*}{*}$ yields, if j=0, that all the vertices of P are vertices of F_1 or F_2 . Then by (ii) P is cubic.

An equality sign in the first position of $\binom{*}{*}$ yields, if j > 0, that a j-face of P is either contained in F_1 or in F_2 or intersects F_1 in a (j-1)-face. In this case it also intersects F_2 in a (j-1)-face, because the roles of F_1 and F_2 may be changed without loss of generality. So all the vertices of P are vertices of F_1 or F_2 , hence P is cubic by (ii), which completes the proof.

4. Proof of Theorem 3

Lemma 2. There does not exist a cubical d-polytope with exactly 2d + 1 facets.

PROOF. Let us assume that P were a d-polytope with exactly 2d + 1 cubic facets. If P were simple, then P itself were cubic and so would have 2d facets. Hence there exists a vertex of P which is not simple; let F be a facet through this vertex. Because F is cubic, F therefore intersects at least 2(d-1) + 1 facets. Since all the facets of P are cubic, P has no triangular faces and so by Theorem 2 there exists a facet F' disjoint from F.

Thus the facets of P are the disjoint facets F and F', 2(d-1) facets intersecting F in a (d-2)-face, and exactly one facet F_0 intersecting F in a (d-2)-face. For d=3 the proof is then easily completed. For $d\geq 4$ we observe that each (d-2)-face S of P is contained in at least one facet different from F_0 , thus S is either contained in F or it is disjoint from F or it intersects F in a (d-3)-face. But

 F_0 contains a (d-2)-face intersecting F in a <(d-3)-face, which leads to a contradiction.

A (d-2)-fold d-prism with basis a pentagon will be called briefly a 5-prismatic d-polytope. Thus a 5-prismatic d-polytope is a pentagon for d=2, and it has 5 cubic facets and 2d-4 5-prismatic facets for $d \ge 3$.

We prove Theorem 3 by induction on the dimension d. The corresponding statement for d = 2 is obviously true, and we assume that Theorem 3 is true in dimension $d - 1 \ge 2$.

So let P be a d-polytope without triangular faces and with exactly 2d + 1 facets, $d \ge 3$. By Theorem 2 every facet of P has then at most 2d - 1 subfacets, so every facet is either cubic by Theorem 1 or 5-prismatic by induction hypothesis. Thus a facet of P is 5-prismatic if and only if it has a 5-prismatic subfacet. Furthermore, by Lemma 2, P has at least one 5-prismatic facet F.

Then the facets of P are F, a facet F' disjoint from F according to Theorem 2, and the facets F_1, \ldots, F_{2d-1} intersecting F in a subfacet. Thus every vertex of F is simple. Then for d = 3, P can easily be seen to be 5-prismatic.

So assume $d \ge 4$. Then F has exactly k := 2(d-1)-4 5-prismatic subfacets, thus without loss of generality F_1, \ldots, F_k are 5-prismatic, and $F_{k+1}, \ldots, F_{k+5} = F_{2d-1}$ may be cubic. F' has at least $2(d-1) \ge 6$ subfacets and so intersects at least one of the F_1, \ldots, F_k in a subfacet, which is 5-prismatic because $F \cap F' = \emptyset$. Hence F' is 5-prismatic.

Thus the vertices of both F and F' are simple. Since any vertex of F or F' is contained in a 5-prismatic subfacet of F resp. F', it is contained in a 5-prismatic facet intersecting both F and F' in a 5-prismatic subfacet. These two facts yield that the graph of P (i.e., the complex of the vertices and edges of P) is that of a 5-prismatic polytope. Since by [6] or [10] a simple polytope is uniquely determined by its graph, P is 5-prismatic.

5. Concluding remark

From Theorem 2 there immediately follows

THEOREM 4. Let P be a convex polytope. Then the following properties are equivalent:

- (1) P has no triangular 2-faces.
- (2) No face of P is a pyramid.
- (3) Let F_j be a j-face of P. Then for every (j-1)-face $F_{j-1} \subset F_j$ there exists a disjoint (j-1)-face $F'_{j-1} \subset F_j$.

REFERENCES

- 1. D. Barnette, *The minimum number of vertices of a simple polytope*, Isr. J. Math. **10** (1971), 121-125.
- 2. D. Barnette, A proof of the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973), 349-354.
- 3. L. J. Billera and C. W. Lee, A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes, J. Comb. Theory, Ser. A 31 (1981), 237-255.
- 4. G. Blind und R. Blind, Über die minimalen Seitenzahlen von Polytopen ohne dreieckige 2-Seiten, Monatsh. Math. 98 (1984), 179-184.
- 5. G. Blind und R. Blind, Die minimale Anzahl der j-Seiten $(d-3 \le j \le d-1)$ von d-Polytopen ohne dreieckige 2-Seiten, Studia Sci. Math. Hungar. 21 (1986), 359-362.
- 6. R. Blind and P. Mani-Levitska, *Puzzles and polytope isomorphisms*, Aequationes Math. 34 (1987), 287-297.
- 7. A. Brøndsted, An Introduction to Convex Polytopes, Springer-Verlag, New York-Heidelberg-Berlin, 1983.
- 8. H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1972), 197-205.
 - 9. B. Grünbaum, Convex Polytopes, Interscience, New York, 1967.
- 10. G. Kalai, A simple way to tell a simple polytope from its graph, J. Comb. Theory, Ser. A 49 (1988), 381-383.
 - 11. Y. Kupitz, Open problem no. 12, Ann. Discrete Math. 20 (1984), 338.
- 12. P. Kleinschmidt, Stellare Abänderungen und Schälbarkeit von Komplexen und Polytopen, J. Geom. 11 (1978), 161-176.
- 13. P. McMullen and G. C. Shephard, Convex Polytopes and the Upper Bound Conjecture, Cambridge University Press, Cambridge, 1971.